[[Electrodynamics MOC]]
# Maxwell's equations in materials
By introducing the auxiliary [[Electric displacement|$\vab D$-field]] and [[H-field]]
and separating free charge and current from those arising from [[Electric dipole moment|electric polarization]] and [[Magnetic dipole moment|magnetization]],
[[Maxwell's equations]] may become
1. [[Gauß's law for diëlectrics]]
2. [[Gauß's law for magnetic flux]]
3. [[Faraday's law of induction]]
4. [[Ampère's law for magnets]]
## Differential form
1. $$
\begin{align*}
\vab{\nabla} \cdot \vab D = \rho_{f}
\end{align*}
$$
2. $$
\begin{align*}
\vab\nabla \cdot \vab B = 0
\end{align*}
$$
3. $$
\begin{align*}
\vab\nabla \times \vab E = -\frac{\partial \vab B}{\partial t}
\end{align*}
$$
4. $$
\begin{align*}
\vab{\nabla} \times \vab H = \vab J_{f} + \frac{ \partial \vab D }{ \partial t }
\end{align*}
$$
## Integral form
1. $$
\begin{align*}
\oiint_{\partial\Omega} \vab D \cdot d\vab a = \iiint_{\Omega} \rho_{f} \, d\tau'
\end{align*}
$$
2. $$
\begin{align*}
\oiint_{\partial \Omega}{\vab B \cdot d\vab a} = 0
\end{align*}
$$
3. $$
\begin{align*}
\mathcal{E} =\oint_{\partial \Sigma}{\vab E \cdot d \vab \ell}
&= -\frac{\partial \Phi_B}{\partial t} \\\\
&= -\frac{\partial}{\partial t} \iint_\Sigma{\vab B \cdot d \vab a}
\end{align*}
$$
4. $$
\begin{align*}
\oint_{\partial\Sigma} \vab H \cdot d\vab r &= \mu_{0}\left( I_{f,\Sigma} + \frac{ \partial \Phi_{D,\Sigma} }{ \partial t } \right) \\
&= \left( \iint_{\Sigma} \vab J_{f} \cdot d\vab a + \frac{d}{dt} \iint_{\Sigma} \vab D \cdot d\vab a \right)
\end{align*}
$$
## Sources
Noting the expressions for [[Electric potential of a polarized material|bound charge density]] and [[Magnetic potential of a magnetized material|bound current density]],
as well as current due to changes in [[Electric dipole moment|electric polarization density]], we have
$$
\begin{align*}
\rho &= \rho_{f} + \rho_{b} \\
&= \rho_{f} - \vab{\nabla} \cdot \vab P \\
\vab J &= \vab J_{f} + \vab J_{b} + \frac{ \partial \vab P }{ \partial t } \\
&= \vab J_{f} + \vab{\nabla} \times \vab M + \frac{ \partial \vab P }{ \partial t }
\end{align*}
$$
#
---
#state/tidy | #lang/en | #SemBr